CICC科普栏目|航空发动机分类及原理图文解析 来源:资质荣誉    发布时间:2023-12-23 14:28:36   阅读:1

  桨扇发动机是一种介于涡轮风扇发动机和涡轮螺旋桨发动机之间的一种发动机形式,其目标是将前者的高速性能和后者的经济性结合起来,目前正处于研究和实验阶段。

  桨扇发动机的结构见图,它由燃气发生器和一副螺桨-风扇(因为实在无法给这个又象螺旋桨又象风扇的东东起个名字,只好叫它螺桨-风扇)组成。螺桨-风扇由涡轮驱动,无涵道外壳,装有减速器,从这些来看它有一点象螺旋桨;但是它的直径比普通螺旋桨小,叶片数目也多(一般有6~8叶),叶片又薄又宽,而且前缘后掠,这些又有些类似于风扇叶片。

  根据涡轮风扇发动机的原理,在飞行速度不变的情况下,涵道比越高,推进效率就越高,因此现代新型不加力涡轮风扇发动机的涵道比慢慢的变大,已经接近了结构所能承受的极限;而去掉了涵道的涡轮螺旋桨发动机尽管效率较高,但由于螺旋桨的速度限制无法应用于M0.8-M0.95的现代高亚音速大型宽体客机,螺桨风扇发动机的概念则应运而生。

  由于无涵道外壳,螺桨风扇发动机的涵道比可以很大,以正在研究中的一种发动机为例,在飞行速度为M0.8时,带动的空气量约为内涵空气流量的100倍,相当于涵道比为100,这是涡轮风扇发动机所望尘莫及的,将其应用于飞机上,可将高空巡航耗油率较目前高涵道比轮风扇发动机降低15%左右。

  同涡轮螺旋桨发动机相比,螺桨风扇发动机的可用速度又高很多,这是由它们叶片形状不相同所决定的。普通螺旋桨叶片的叶型厚度大以保证强度,弯度大以保证升力系数,从剖面来看,这种叶型实际上就是典型的低速飞机的机翼剖面形状,它在低速情况下效率很高,但一旦接近音速,效率就急剧下降,因此装有涡轮螺旋桨发动机的飞机速度限制在M0.6~M0.65左右;而螺桨-风扇的既宽且薄、前缘尖锐并带有后掠的叶型则类似于超音速机翼的剖面形状,这种叶型的跨音速性能就要好的多,在飞行速度为M0.8时仍有良好的推进效率,是目前新型发动机中最有希望的一种。

  当然,螺桨风扇发动机也有其缺点,由于转速较高,产生的振动和噪音也较大,这对舒适性有严格要求的客机来讲是一个难题。另外,暴露在空气中的螺桨-风扇的包容性,气动匹配,控制等也是目前研究的难点所在。

  涡轮风扇喷气发动机的诞生:二战后,跟着时间推移、技术更新,涡轮喷气发动机显得不足以满足新型飞机的动力需求。尤其是二战后加快速度进行发展的亚音速民航飞机和大型运输机,飞行速度要求达到高亚音速即可,耗油量要小,因此发动机效率要很高。涡轮喷气发动机的效率已经没办法满足这种需求,使得上述机种的航程缩短。因此一段时期内出现了较多的使用涡轮螺旋桨发动机的大型飞机。

  实际上早在30年代起,带有外涵道的喷气发动机已然浮现了一些粗糙的早期设计。40和50年代,早期涡扇发动机开始了试验。但由于对风扇叶片设计制造的要求非常高。因此直到60年代,人们才得以制造出符合涡扇发动机要求的风扇叶片,从而揭开了涡扇发动机实用化的阶段。

  50年代,美国的NACA(即NASA美国航空航天管理局的前身)对涡扇发动机进行了很重要的科研工作。55到56年研究成果转由通用电气公司(GE)继续深入发展。GE在1957年成功推出了CJ805-23型涡扇发动机,立即打破了超音速喷气发动机的大量纪录。但最早的实用化的涡扇发动机则是普拉特惠特尼(Pratt & Whitney)公司的JT3D涡扇发动机。实际上普惠公司启动涡扇研制项目要比GE晚,他们是在探听到GE在研制CJ805的机密后,匆忙加紧工作,抢先推出了了实用的JT3D。

  1960年,罗尔斯罗伊斯公司的“康威”(Conway)涡扇发动机开始被波音707大型远程喷气客机采用,成为第一种被民航客机使用的涡扇发动机。60年代洛克西德“三星”客机和波音747“珍宝”客机采用了罗罗公司的RB211-22B大型涡扇发动机,标志着涡扇发动机的全面成熟。此后涡轮喷气发动机迅速的被西方民用航空工业抛弃。

  波音707的军用型号之一,KC-135加油机。不加力式涡扇发动机实际上较为容易辨认,其外部有一直径很大的风扇外壳。

  发动机的效率包括热效率和推进效率两个部分。提高燃气在涡轮前的温度和压气机的增压比,就能大大的提升热效率。因为高温、高密度的气体包含的能量要大。但是,在飞行速度不变的条件下,提高涡轮前温度,自然会使排气速度加大。而流速快的气体在排出时动能损失大。因此,片面的加大热功率,即加大涡轮前温度,会导致推进效率的下降。要全方面提高发动机使用效能,必需同时兼顾热效率和推进效率。

  涡轮风扇发动机的妙处,就在于既提高涡轮前温度,又不增加排气速度。涡扇发动机的结构,实际上就是涡轮喷气发动机的前方再增加了几级涡轮,这些涡轮带动少数的风扇。风扇吸入的气流一部分如普通喷气发动机一样,送进压气机(术语称“内涵道”),另一部分则直接从涡喷发动机壳外围向外排出(“外涵道”)。因此,涡扇发动机的燃气能量被分派到了风扇和燃烧室分别产生的两种排气气流上。这时,为提高热效率而提高涡轮前温度,能够最终靠适当的涡轮结构和增大风扇直径,使更多的燃气能量经风扇传递到外涵道,从而避免大幅度的增加排气速度。这样,热效率和推进效率取得了平衡,发动机的效率得到极大提高。效率高就从另一方面代表着油耗低,飞机航程变得更远。

  涡轮风扇喷气发动机的优缺点:如前所述,涡扇发动机效率高,油耗低,飞机的航程就远。但涡扇发动机技术复杂,尤其是如何将风扇吸入的气流正确的分配给外涵道和内涵道,是极大的技术难题。但涡扇发动机技术复杂,尤其是大涵道比涉及到方方面面的技术和适航,同业竞争等因素,当前有能力研发且占领市场的屈指可数。当前国内只有个别军机配装了涡扇发动机,而民用涡扇发动机尚在研发阶段。

  涡轮喷气发动机的诞生:二战以前,活塞发动机与螺旋桨的组合已经取得了极大的成就,使得人类获得了挑战天空的能力。但到了三十年代末,航空技术的发展使得这一组合达到了极限。螺旋桨在飞行速度达到800千米/小时的时候,桨尖部分实际上已接近了音速,跨音速流场使得螺旋桨的效率急剧下降,推力不增反减。螺旋桨的迎风面积大,阻力也大,极大阻碍了飞行速度的提高。同时随着飞行高度提高,大气稀薄,活塞式发动机的功率也会减小。

  这促生了全新的喷气发动机推进体系。喷气发动机吸入大量的空气,燃烧后高速喷出,对发动机产生反作用力,推动飞机向前飞行。

  早在1913年,法国工程师雷恩洛兰就提出了冲压喷气发动机的设计,并获得专利。但当时没有相应的助推手段和相应材料,喷气推进只是一个空想。1930年,英国人弗兰克惠特尔获得了燃气涡轮发动机专利,这是第一个具有实用性的喷气发动机设计。11年后他设计的发动机首次飞行,从而成为了涡轮喷气发动机的鼻祖。

  涡轮喷气发动机的原理:涡轮喷气发动机简称涡喷发动机,通常由进气道、压气机、燃烧室、涡轮和尾喷管组成。部分军用发动机的涡轮和尾喷管间还有加力燃烧室。

  工作时,发动机首先从进气道吸入空气。这一过程并不是简单的开个进气道即可,由于飞行速度是变化的,而压气机对进气速度有严格要求,因而进气道必需可以将进气速度控制在合适的范围。

  压气机顾名思义,用于提高吸入的空气的的压力。压气机主要为扇叶形式,叶片转动对气流做功,使气流的压力、温度升高。

  随后高压气流进入燃烧室。燃烧室的燃油喷嘴射出油料,与空气混合后点火,产生高温度高压力燃气,向后排出。

  高温度高压力燃气向后流过高温涡轮,部分内能在涡轮中膨胀转化为机械能,驱动涡轮旋转。由于高温涡轮同压气机装在同一条轴上,因此也驱动压气机旋转,从而反复的压缩吸入的空气。

  从高温涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速从尾部喷口向后排出。这一速度比气流进入发动机的速度大得多,由此产生了对发动机的反作用推力,驱使飞机向前飞行。

  涡轮喷气发动机的优缺点:这类发动机具有加速快、设计简便等优点,是较早实用化的喷气发动机类型。但如果要让涡喷发动机提高推力,则必须增加燃气在涡轮前的温度和增压比,这将会使排气速度增加而损失更多动能,于是产生了提高推力和降低油耗的矛盾。因此涡喷发动机油耗大,对于商业民航机来说是个致命弱点。

  涡轮轴发动机的诞生:涡轮轴发动机首次正式试飞是在1951年12月。作为直升机的新型动力,兼有喷气发动机和螺旋桨发动机特点的涡轮轴令直升机的发展更进一步。当时涡轮轴发动机还划入涡轮螺桨发动机一类。随着直升机的普及和其先进性能的体现,涡轮轴发动机逐渐被视为单独的一种喷气发动机。

  在1950年时,透博梅卡(Turbomeca)公司研制成“阿都斯特-1”(Artouste-1)涡轮轴发动机。该发动机只有一级离心式叶轮压气机,有两级涡轮的输出轴,功率达到了206千瓦(280轴马力),变成全球上第一台实用的直升机涡轮轴发动机。首先装用这种发动机的是美国贝尔直升机公司生产的Bell47(编号为XH-13F),1954年该机首飞。到了50年代中期,涡轮轴发动机开始为直升机设计者所大量采用。

  涡轮轴发动机的原理:涡轮轴发动机与涡轮螺旋桨发动机相似,曾经被划入同一分类。它们都由涡轮喷气发动机演变而来,涡桨发动机驱动螺旋桨,涡轮轴发动机则驱动直升机的旋翼轴获得升力和气动控制力。当然涡轮轴发动机也有自己的特色:通常带有自由涡轮,而别的形式的涡轮喷气发动机一般没有自由涡轮。

  涡轮轴发动机具有涡轮喷气发动机的大部分特点,也有着进气道、压气机、燃烧室和尾喷管等基本组件。其特有的自由涡轮位于燃烧室后方,高能燃气对自由涡轮作功,通过传动轴、减速器等带动直升机的旋翼旋转,从而升空飞行。自由涡轮并不像其他涡轮那样要带动压气机,它专门用于输出功率,类似于汽轮机。做功后排出的燃气,经尾喷管喷出,能量已经不大,产生的推力很小,包含的推力大约仅占总推力的十分之一左右。因此,为了适应直升机机体结构的需要,涡轮轴发动机喷口可灵活安排,可以向上,向下或向两侧,而不一定要向后。尽管涡轮轴发动机里面,带动压气机的燃气发生器涡轮与自由涡轮并不机械互联,但气动上有着密切联系。对这两种涡轮,在气体热能分配上,需要随飞行条件的改变而适当调整,从而取得发动机性能与直升机旋翼性能的最优组合。

  参照涡轮风扇发动机理论,涡轮轴发动机带动的旋翼的直径应该越大越好。因为同一个的核心发动机,所配合的旋翼直径越大,在旋翼上所产生的升力就越大。以目前的水平计算,旋翼驱动的空气流量一般是涡轮轴发动机里面空气流量的500到1000倍。

  因为速度低所以冲压效果不明显,进气道设计采取侧向等形式也是常见的。温度高,热效率就高,推进效率高要求尽可能的提高涵道比。通常把内流进气道设计为收敛形,驱使气流在收敛时加速流动,令流场更加均匀。进口唇边呈流线形,适合亚音速流线要求,避免气流分离,保证压气机的稳定工作。此外,由于直升机飞得离地面较近,一般必需去除进气中杂质,通常都有粒子分离器。粒子分离器可以与进气道设计成一体。分离器设计为一定螺旋形状,利用惯性力场,使进气中的砂粒因为质量较大,在弯道处获得比较大的惯性力,被甩出主气流之外,通过分流排出进气道之外。

  尽管涡轮轴发动机排气能量不高,但对于敌方红外探测装置来说仍然是相当客观的目标。发动机排气是直升机主要热辐射源之一。作战直升机必须减小自身热辐射强度,要采用红外抑制技术。一方面,要设法降低发动机外露热部件的表面温度,更重要的是,要将外界冷空气引入并混合到高温徘气热流中,以此来降低温度,冲淡二氧化氯的浓度,降低红外特征。先进的红外抑制技术通常将排气装置、冷却空气道以及发动机的安装的地方作为完整、有效的系统来进行设计制造。

  我们知道,压气机包括分为轴流式和离心式两种。轴流式压气机,面积小、流量大;离心式结构相对比较简单、工作较稳定。涡轮轴发动机从纯轴流式开始,发展了单级离心、双级离心到轴流与离心混装一起的组合式压气机,历经多次变革。目前涡轮轴发动机一般都会采用若干级轴流加一级离心构成组合压气机,兼有两者的优点。国产涡轴-6、涡轴-8发动机为1级轴流加1级离心构成的组合压气机;“黑鹰”直升机上的T700发动机采用5级轴流加1级离心压气机。压气机部件最重要的包含进气导流器、压气机转子、压气机静子及防喘装置等。压气机转子是一个非常快速地旋转的组合件,轴流式转子叶片呈叶栅排列安装在工作叶轮周围,离心式转子 叶片则呈辐射形状铸在叶轮外部。压气机静子由压气机壳体和静止叶片组成。转子旋转时,通过转子叶片迫使空气向后流动,不仅加速了空气,而且使空气受到压缩,转子叶片后面的空气压强大于前面的压强。气流离开转子叶片后,进入起扩压作用的静子叶片。在静子叶片的通道,空气流速降低、压强升高,得到进一步压缩。一个转子加一个静子称为一级。衡量空气经过压气机被压缩的程度,常用压缩后与压缩前的压强之比,即增压比来表示。





上一篇:飞机涡轮电扇发动机最大的长处是什么? 下一篇:XP11 FF 波音757 中文攻略 222辅佐动力装置